Telegram Group & Telegram Channel
Градиентный бустинг и случайный лес: когда какой алгоритм использовать?

Рассмотрим несколько ситуаций:

🔹 Если в ваших данных много пропущенных значений.
Случайный лес может справиться с такими данными. Впрочем, современные реализации градиентного бустинга, такие как LightGBM или CatBoost, также поддерживают работу с пропусками.

🔹 Если вам важна интерпретируемость модели.
Результаты случайного леса легче интерпретируются через важность признаков.

🔹 Если время обучения ограничено.
Случайный лес может обучаться быстрее за счёт параллелизации. Однако современные реализации градиентного бустинга также поддерживают ускорение за счёт параллельных вычислений.

🔹 Если в данных есть дисбаланс классов.
Градиентный бустинг может решить эту проблему, увеличивая веса неверно классифицированных примеров на каждой итерации.

#машинное_обучение
👍4🔥3



tg-me.com/ds_interview_lib/582
Create:
Last Update:

Градиентный бустинг и случайный лес: когда какой алгоритм использовать?

Рассмотрим несколько ситуаций:

🔹 Если в ваших данных много пропущенных значений.
Случайный лес может справиться с такими данными. Впрочем, современные реализации градиентного бустинга, такие как LightGBM или CatBoost, также поддерживают работу с пропусками.

🔹 Если вам важна интерпретируемость модели.
Результаты случайного леса легче интерпретируются через важность признаков.

🔹 Если время обучения ограничено.
Случайный лес может обучаться быстрее за счёт параллелизации. Однако современные реализации градиентного бустинга также поддерживают ускорение за счёт параллельных вычислений.

🔹 Если в данных есть дисбаланс классов.
Градиентный бустинг может решить эту проблему, увеличивая веса неверно классифицированных примеров на каждой итерации.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/582

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

Библиотека собеса по Data Science | вопросы с собеседований from ca


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA